STUDY

Undergraduate

BSc (Hons) Biological Sciences (with Foundation Year)

Cells under a microscope
Institution code: S82
UCAS code: C761
Start date: September 2023
Duration: Four years full-time, seven years part-time
Location: Ipswich
Typical Offer: Please call our Clearing Hotline on 01473 338352 to discuss your qualifications and suitability for 2023 entry.
Institution code: S82
UCAS code: C761
Start date: September 2023
Duration: Four years full-time, seven years part-time
Location: Ipswich
Typical Offer: Please call our Clearing Hotline on 01473 338352 to discuss your qualifications and suitability for 2023 entry.
Course information table
Institution code: S82
UCAS code: C761
Start date: September 2024
Duration: Four years full-time, seven years part-time
Location: Ipswich
Typical Offer: 80 UCAS tariff points (or above), CDD(A-Level) MMP (BTEC), Pass A*-C (T Level)
Course information table
Institution code: S82
UCAS code: C761
Start date: September 2024
Course information table
Duration: Four years full-time, seven years part-time
Location: Ipswich
Typical Offer: 80 UCAS tariff points (or above), CDD(A-Level) MMP (BTEC), Pass A*-C (T Level)

Overview

This exciting degree course aims for students to develop an understanding of the complexity and diversity of life processes through the study of a range of modules including molecular biotechnology, immunology, cell biology and biochemistry, and developmental biology. It explores cutting edge developments including stem cell research and regenerative medicine.

Modules such as science communication and ethics and bioentrepreneurship and business bring a strong vocational focus to the degree. The course therefore provides an excellent background for further study and will be particularly suited to those who are interested in an interdisciplinary approach to biology.

The aim of the Foundation Year is to provide students with the subject knowledge, study skills and personal confidence to succeed at degree level in a bioscience subject. This year provides a supportive route to degree level study for students from a wide variety of educational and working backgrounds.

Further information about the university's relationship with the Royal Society of Biology is available in the PSRB register.

The University of Suffolk is world-class and committed to our region. We are proudly modern and innovative and we believe in transformative education. We are on the rise with a focus on student satisfaction, graduate prospects, spending on academic services and student facilities.

2nd

in the East of England for graduate prospects

The Complete University Guide 2024

6th

in the UK for spend on academic services

The Complete University Guide 2023

11th

in the UK for social inclusion

The Good University Guide 2023

Course Modules

Our undergraduate programmes are delivered as block and blend' — more information can be found on Why Suffolk?  You can also watch our Block and Blend video.   

The Foundation year consists of six modules delivered over two semesters and is assessed at the end of each semester. The course is delivered over three days each week. Modules studied include: Foundations of Anatomy and Physiology, Fundamentals of Biochemistry and Biophysics, Introduction to Health Sciences, Mathematics for Science, Principles of Biology and Scientific Study Skills. 

Downloadable information regarding all University of Suffolk courses, including Key Facts, Course Aims, Course Structure and Assessment, is available in the Definitive Course Record.

 

Timetable for students commencing Sept 2023
Close-up of student looking through a microscope

This module will enable students to develop the knowledge and practical skills that will prepare them for undergraduate studies in biological sciences. This module considers the structure and function of major physiological systems within the human body. Topics covered include the digestive, cardiovascular, respiratory, excretory, endocrine, nervous, musculo-skeletal and reproductive systems, and basic genetics. Theory will be supported by practical laboratory work.

Study of the biological sciences is often supported by a range of techniques developed through the use of physics and chemistry. Furthermore, there is much evidence of interaction between the physical and chemical sciences with that of biology, much of which would benefit from a greater fundamental understanding. Therefore this module is intended to give students a broad understanding of some of the chemical and physical principles that underpin much of biology.

This module will introduce you to autonomous learning, investigation, problem solving and the use of logic, to help a smooth transition from Foundation Year to Year One. This module will encourage more scientific investigation and practice of scientific skills.

Mathematics is the language of science. The study of any science requires some degree of mathematical understanding. Mathematics is not necessarily difficult, but requires a supportive learning environment where key concepts are demystified and applied in a logical and orderly fashion. Aimed at those without an ‘A-Level’ Mathematics and/or 'return to learning' students, this module aims to develop the students’ skills and increase their confidence in using mathematics in general; and in particular in the application of mathematics to health and life sciences.

This module will enable students to develop the knowledge and practical skills that will prepare them for undergraduate studies in biological sciences and related subjects. This module considers the structure and function of major biological molecules and biochemical systems.

The purpose of this module is to develop student’s skills in written and oral communication and develop the study skills needed for undergraduate work. The module will explore essay writing, academic referencing, avoiding plagiarism, organising, planning and editing written work, and improving technical writing style. Students will also consider time management, meeting deadlines, developing personal awareness and confidence by class presentations. The module will also utilise on-line delivery of material via the virtual learning environment thus providing an impetus to cultivate IT skills.

This module is designed to give a solid foundation on which to build further study in biological science.  It will investigate the fundamentals of biochemistry starting from basic atomic structure and bonding to then focus on the structure, function and metabolism of macromolecules. Students with differing levels of previous knowledge of chemistry and biology will be introduced to the range of processes taking place within the body at a molecular level.

Cells are the basic unit of all living organisms.  In this module, students will examine the structure and function of cells, and the signals that control eukaryotic cell division, adhesion, migration, and programmed cell death.  Students will analyse how cells contribute to animal physiology and disease, and be introduced to the techniques used to study cells in the laboratory.

This module is intended to give students a broad overview of life on earth. It follows chronologically the development from biomolecules and the first basic cells through to the more complex organisms such as hominids and modern plants. Students will gain an appreciation of the process of evolution through natural selection which will furnish them with knowledge to underpin much of their further studies. Consideration will be given to organization and classification of life along with the shortcomings of this process.

A thorough understanding of human physiology and the maintenance of homeostasis are key facets in a range of scientific disciplines. In this module, students will study the way in which different cells, tissues, organs and organ systems contribute to homeostasis from a theoretical perspective.

DNA is arguably the most important macromolecule in life and this module is designed to provide a solid foundation of knowledge on which the student can build throughout the Bioscience degree programme. Beginning with the fundamental concepts of DNA and its role in heredity and the genetic code, the module will build up through expression of genotype to phenotype and the control of gene expression.

This module will provide students with the core skills required to carry out basic scientific procedures and communicate their research in an appropriate scientific format.  The module is based on a series of practical sessions and is designed to develop the skills required for subsequent advanced modules on the course. 

Effective scientists need to understand how experimentation, qualitative and quantitative analysis drives science forward via the process of attempted falsification and how this is quantified and presented. This module prepares students for further study and employment by providing an understanding of inferential statistical analysis of scientific data; it prepares them for the Dissertation module at Level 6. It will enable students to understand, interpret and apply most of the statistical techniques that they will see in published articles and allow them to emulate such analysis in their own work.

Effective scientists need to understand how experimentation and research drives science forward and how this is communicated. This module prepares students for further study and employment by providing an understanding of what science is and how it works; it also prepares them for the Dissertation module at Level 6.  It introduces students to the principles of scientific research and the planning and design of experiments.  Students will learn how to effectively analyse literature and communicate science in a variety of methods. Students will also study the detailed aspects of research design and planning.

An understanding of the immunological process has been fundamental to many of the advances made in science and medicine.  In this module students will explore the cellular basis of infection via pathogens and the immunological defence system the body deploys in order to prevent the development of infectious disease.  The module will deal with the structure and function of the human immune system in terms of the innate and adaptive immune responses focusing on the cells and molecules involved.

The aim of this Module is to provide the students with an introduction to the biology of microorganisms. Furthermore, learners will be equipped with knowledge and practical skills currently used in the field of microbiology. The Module aims also to set an introduction to some key properties and applications of selected microbial organisms, particularly bacteria and viruses, which will be further investigated in the Molecular Biotechnology Module. Students will learn about the structural, biological and molecular characteristics of major microorganisms, to include bacteria, viruses, fungi and protists. In addition, the significance of microbes in health and disease will be investigated, also with the support of current research literature.

This module is designed to introduce students to the principles of nucleic acids manipulation and cloning. The introduction of the module will include a thorough background on DNA handling, manipulation and analysis. The module will then detail the standard techniques by which DNA can be differently inserted into prokaryotic and eukaryotic cells, and its expression monitored. The solid theoretical knowledge will be accompanied by an intensive series of practical activities, where the students will be challenged through a series of cloning experiments, which will put into practice the previously learned theory. Classic techniques will be presented together with the more advanced, cutting-edge technologies and approaches, applied to research, medicine and industry The module content will represent the ideal continuity between the basics of genetics and cell biology learned during level four and the advanced modules presented at level six. Moreover, the techniques and methodology described in this module will be an essential stepping-stone for the progression in a life science career, being fundamental tools used within research, biomedicine and industry.

Health and disease may be considered two extremes of a continuum. This module will explore the factors that set the graduations between the two extremes. This module is designed to review the nature of and causation of diseases, by considering environmental, genetic, and biologic factors and link the characteristics of disease to the signs and symptoms utilised in diagnosis. The module enables the students to consider the scientific methods involved in the investigation of disease and the application of these methods in the clinical environment. Particular emphasis is given to elucidating the pathophysiological and molecular/biomolecular aspects behind each disease presented. The module will also give the students the opportunity to investigate the positive and negative effects of diet on health and disease.

This module has been conceived to provide students with the opportunity to enhance their employability skills and experience through undertaking a 100 hour period of work-based experience in a field related to their degree programme. This will enable students to develop work related skills, enhance and apply the knowledge and skills gained during their studies to the workplace, and reflect on their career and personal development. Additionally, students can continue to develop their graduate key skills including problem solving, communication and working with others, within the work environment. This module can also be undertaken by students who are already in relevant employment, thereby enhancing their career development. The choice and nature of work placement will be carefully negotiated between student, work place provider and module leader, to ensure that the learning opportunities are appropriate and of sufficient rigour for a Level 5 undergraduate degree programme. Consequently, the work experience would involve activities where students can be given (supervised) responsibility for a task and to be able to exercise a degree of decision-making and personal responsibility.

The dissertation will provide an opportunity for individuals to develop an area of scientific interest arising from either course-based or work-based experience. The focus of the dissertation will be a research-based study, central to which will be some form of hypothesis testing or problem solving.  It will enable students to utilise practical, intellectual and decision making skills in novel situations. The dissertation will provide a mechanism for the development of autonomy and self-direction whilst undertaking a problem solving approach to a research topic.

This module is designed to provide you with an overview of some fundamental developmental processes that lead to the formation of a multicellular organism from a single zygote, up to the gastrulation process. The module will consider some key developmental models with cellular and molecular events underpinning both development and regeneration, therefore linking core stem cell biology knowledge.

This module will develop the necessary skills required to maximise students’ success following graduation in the Life Sciences.  In this module students will explore the numerous career paths available for life science graduates, will gain experience of graduate recruitment processes, and will critically analyse their own skills and capabilities to develop, reflect and improve their professional career prospects.  In addition, the students will be introduced to elements of bioentrepreneurship and ethics. In particular, areas such as outlining a business plan, patent application, intellectual property, clinical trials and policy making will be explored.

This module will provide you with theoretical knowledge and advanced practical experience of core laboratory techniques used to carry out experimental research within the life sciences area. The module is based on a series of practical sessions and will giving you experience of performing experimental work, collecting data, and interpreting and presenting results, using a range of media.

This module is intended to allow the student to draw together a wide range of topics covered at levels 4 and 5 into the applied area of pharmacology and toxicology. This module utilizes understanding and application of biochemistry, molecular biology, cell biology, genetics and physiology to solve problems. The interdisciplinary nature of the field provides an ideal opportunity for students to contextualise their studies within an important progressive science. Much research and employment of bioscience graduates is in the field of medical research and business; this module provides a broad understanding of pharmacology, toxicology and how they are linked.

This module uses knowledge gained at levels four and five to further develop skills in analysis and evaluation. The module will examine nutrition as it relates to the prevention and treatment of disease and deals with the nutritional aspects of diseases and clinical disorders by integrating students' existing knowledge of physiology, biochemistry and food science. In this module students will also consider the nutritional requirements of humans throughout the lifespan; the changing physiological status and subsequent changes in nutritional requirements will be studied along with a critical appraisal of how this is met with respect to diet, sociological status, geography and education. The module will also examine the communication of dietary recommendations to user groups and assess its effectiveness.

Course Modules 2024

Our undergraduate programmes are delivered as 'block and blend' — more information can be found on Why Suffolk?  You can also watch our Block and Blend video
The Foundation year consists of six modules delivered over two semesters and is assessed at the end of each semester. The course is delivered over three days each week. Modules studied include: Foundations of Anatomy and Physiology, Fundamentals of Biochemistry and Biophysics, Introduction to Health Sciences, Mathematics for Science, Principles of Biology and Scientific Study Skills. 
Downloadable information regarding all University of Suffolk courses, including Key Facts, Course Aims, Course Structure and Assessment, is available in the Definitive Course Record.
Timetable for students commencing Sept 2023
Close-up of student looking through a microscope

This module will enable students to develop the knowledge and practical skills that will prepare them for undergraduate studies in biological sciences. This module considers the structure and function of major physiological systems within the human body. Topics covered include the digestive, cardiovascular, respiratory, excretory, endocrine, nervous, musculo-skeletal and reproductive systems, and basic genetics. Theory will be supported by practical laboratory work.

Study of the biological sciences is often supported by a range of techniques developed through the use of physics and chemistry. Furthermore, there is much evidence of interaction between the physical and chemical sciences with that of biology, much of which would benefit from a greater fundamental understanding. Therefore this module is intended to give students a broad understanding of some of the chemical and physical principles that underpin much of biology.

This module will introduce you to autonomous learning, investigation, problem solving and the use of logic, to help a smooth transition from Foundation Year to Year One. This module will encourage more scientific investigation and practice of scientific skills.

Mathematics is the language of science. The study of any science requires some degree of mathematical understanding. Mathematics is not necessarily difficult, but requires a supportive learning environment where key concepts are demystified and applied in a logical and orderly fashion. Aimed at those without an ‘A-Level’ Mathematics and/or 'return to learning' students, this module aims to develop the students’ skills and increase their confidence in using mathematics in general; and in particular in the application of mathematics to health and life sciences.

This module will enable students to develop the knowledge and practical skills that will prepare them for undergraduate studies in biological sciences and related subjects. This module considers the structure and function of major biological molecules and biochemical systems.

The purpose of this module is to develop student’s skills in written and oral communication and develop the study skills needed for undergraduate work. The module will explore essay writing, academic referencing, avoiding plagiarism, organising, planning and editing written work, and improving technical writing style. Students will also consider time management, meeting deadlines, developing personal awareness and confidence by class presentations. The module will also utilise on-line delivery of material via the virtual learning environment thus providing an impetus to cultivate IT skills.

This module is designed to give a solid foundation on which to build further study in biological science.  It will investigate the fundamentals of biochemistry starting from basic atomic structure and bonding to then focus on the structure, function and metabolism of macromolecules. Students with differing levels of previous knowledge of chemistry and biology will be introduced to the range of processes taking place within the body at a molecular level.

Cells are the basic unit of all living organisms.  In this module, students will examine the structure and function of cells, and the signals that control eukaryotic cell division, adhesion, migration, and programmed cell death.  Students will analyse how cells contribute to animal physiology and disease, and be introduced to the techniques used to study cells in the laboratory.

This module is intended to give students a broad overview of life on earth. It follows chronologically the development from biomolecules and the first basic cells through to the more complex organisms such as hominids and modern plants. Students will gain an appreciation of the process of evolution through natural selection which will furnish them with knowledge to underpin much of their further studies. Consideration will be given to organization and classification of life along with the shortcomings of this process.

A thorough understanding of human physiology and the maintenance of homeostasis are key facets in a range of scientific disciplines. In this module, students will study the way in which different cells, tissues, organs and organ systems contribute to homeostasis from a theoretical perspective.

DNA is arguably the most important macromolecule in life and this module is designed to provide a solid foundation of knowledge on which the student can build throughout the Bioscience degree programme. Beginning with the fundamental concepts of DNA and its role in heredity and the genetic code, the module will build up through expression of genotype to phenotype and the control of gene expression.

This module will provide students with the core skills required to carry out basic scientific procedures and communicate their research in an appropriate scientific format.  The module is based on a series of practical sessions and is designed to develop the skills required for subsequent advanced modules on the course. 

Effective scientists need to understand how experimentation, qualitative and quantitative analysis drives science forward via the process of attempted falsification and how this is quantified and presented. This module prepares students for further study and employment by providing an understanding of inferential statistical analysis of scientific data; it prepares them for the Dissertation module at Level 6. It will enable students to understand, interpret and apply most of the statistical techniques that they will see in published articles and allow them to emulate such analysis in their own work.

Effective scientists need to understand how experimentation and research drives science forward and how this is communicated. This module prepares students for further study and employment by providing an understanding of what science is and how it works; it also prepares them for the Dissertation module at Level 6.  It introduces students to the principles of scientific research and the planning and design of experiments.  Students will learn how to effectively analyse literature and communicate science in a variety of methods. Students will also study the detailed aspects of research design and planning.

An understanding of the immunological process has been fundamental to many of the advances made in science and medicine.  In this module students will explore the cellular basis of infection via pathogens and the immunological defence system the body deploys in order to prevent the development of infectious disease.  The module will deal with the structure and function of the human immune system in terms of the innate and adaptive immune responses focusing on the cells and molecules involved.

The aim of this Module is to provide the students with an introduction to the biology of microorganisms. Furthermore, learners will be equipped with knowledge and practical skills currently used in the field of microbiology. The Module aims also to set an introduction to some key properties and applications of selected microbial organisms, particularly bacteria and viruses, which will be further investigated in the Molecular Biotechnology Module. Students will learn about the structural, biological and molecular characteristics of major microorganisms, to include bacteria, viruses, fungi and protists. In addition, the significance of microbes in health and disease will be investigated, also with the support of current research literature.

This module is designed to introduce students to the principles of nucleic acids manipulation and cloning. The introduction of the module will include a thorough background on DNA handling, manipulation and analysis. The module will then detail the standard techniques by which DNA can be differently inserted into prokaryotic and eukaryotic cells, and its expression monitored. The solid theoretical knowledge will be accompanied by an intensive series of practical activities, where the students will be challenged through a series of cloning experiments, which will put into practice the previously learned theory. Classic techniques will be presented together with the more advanced, cutting-edge technologies and approaches, applied to research, medicine and industry The module content will represent the ideal continuity between the basics of genetics and cell biology learned during level four and the advanced modules presented at level six. Moreover, the techniques and methodology described in this module will be an essential stepping-stone for the progression in a life science career, being fundamental tools used within research, biomedicine and industry.

Health and disease may be considered two extremes of a continuum. This module will explore the factors that set the graduations between the two extremes. This module is designed to review the nature of and causation of diseases, by considering environmental, genetic, and biologic factors and link the characteristics of disease to the signs and symptoms utilised in diagnosis. The module enables the students to consider the scientific methods involved in the investigation of disease and the application of these methods in the clinical environment. Particular emphasis is given to elucidating the pathophysiological and molecular/biomolecular aspects behind each disease presented. The module will also give the students the opportunity to investigate the positive and negative effects of diet on health and disease.

This module has been conceived to provide students with the opportunity to enhance their employability skills and experience through undertaking a 100 hour period of work-based experience in a field related to their degree programme. This will enable students to develop work related skills, enhance and apply the knowledge and skills gained during their studies to the workplace, and reflect on their career and personal development. Additionally, students can continue to develop their graduate key skills including problem solving, communication and working with others, within the work environment. This module can also be undertaken by students who are already in relevant employment, thereby enhancing their career development. The choice and nature of work placement will be carefully negotiated between student, work place provider and module leader, to ensure that the learning opportunities are appropriate and of sufficient rigour for a Level 5 undergraduate degree programme. Consequently, the work experience would involve activities where students can be given (supervised) responsibility for a task and to be able to exercise a degree of decision-making and personal responsibility.

The dissertation will provide an opportunity for individuals to develop an area of scientific interest arising from either course-based or work-based experience. The focus of the dissertation will be a research-based study, central to which will be some form of hypothesis testing or problem solving.  It will enable students to utilise practical, intellectual and decision making skills in novel situations. The dissertation will provide a mechanism for the development of autonomy and self-direction whilst undertaking a problem solving approach to a research topic.

This module is designed to provide you with an overview of some fundamental developmental processes that lead to the formation of a multicellular organism from a single zygote, up to the gastrulation process. The module will consider some key developmental models with cellular and molecular events underpinning both development and regeneration, therefore linking core stem cell biology knowledge.

This module will develop the necessary skills required to maximise students’ success following graduation in the Life Sciences.  In this module students will explore the numerous career paths available for life science graduates, will gain experience of graduate recruitment processes, and will critically analyse their own skills and capabilities to develop, reflect and improve their professional career prospects.  In addition, the students will be introduced to elements of bioentrepreneurship and ethics. In particular, areas such as outlining a business plan, patent application, intellectual property, clinical trials and policy making will be explored.

This module will provide you with theoretical knowledge and advanced practical experience of core laboratory techniques used to carry out experimental research within the life sciences area. The module is based on a series of practical sessions and will giving you experience of performing experimental work, collecting data, and interpreting and presenting results, using a range of media.

This module is intended to allow the student to draw together a wide range of topics covered at levels 4 and 5 into the applied area of pharmacology and toxicology. This module utilizes understanding and application of biochemistry, molecular biology, cell biology, genetics and physiology to solve problems. The interdisciplinary nature of the field provides an ideal opportunity for students to contextualise their studies within an important progressive science. Much research and employment of bioscience graduates is in the field of medical research and business; this module provides a broad understanding of pharmacology, toxicology and how they are linked.

This module uses knowledge gained at levels four and five to further develop skills in analysis and evaluation. The module will examine nutrition as it relates to the prevention and treatment of disease and deals with the nutritional aspects of diseases and clinical disorders by integrating students' existing knowledge of physiology, biochemistry and food science. In this module students will also consider the nutritional requirements of humans throughout the lifespan; the changing physiological status and subsequent changes in nutritional requirements will be studied along with a critical appraisal of how this is met with respect to diet, sociological status, geography and education. The module will also examine the communication of dietary recommendations to user groups and assess its effectiveness.

Waterfront Building reflecting in the marina

WHY SUFFOLK

16th place in the Whatuni Student Choice Awards for Best Facilities 2023

WUSCA 2023

5th place in the Whatuni Student Choice Awards for Career Prospects 2023

WUSCA 2023

14th place in the Whatuni Student Choice Awards for Student Support 2023

WUSCA 2023
A student working in a laboratory
Bioscience Lab
Close-up of student writing on petri dishes
Watch to find out more
A student working in a laboratory
Bioscience Student in the lab
DNA helix model and students in a laboratory
DNA helix model and students in a laboratory

Entry Requirements

Entry Requirements 2024/25

home-masthead-th

Career Opportunities

Our graduates will be well placed to secure jobs as researchers working in universities, pharmaceutical and biological science companies and institutes.

  • Clinical/Technical roles within NHS   
  • Scientific Advisory roles
  • Science Sales 
  • Science Teacher
  • Further study such as Masters or PhD

Our course also offers an optional work-experience module, as well as a placement year, allowing students to further explore and develop their professional skills and interests. 

Your Course Team

Dr Nick Tucker

Nick is course leader for Biomedical Sciences and is a molecular microbiologist interested in the biology of Pseudomonas bacteria.

Dr Imogen Butcher

Imogen is a lecturer on the Biomedical Science and Bioscience degree courses.

Cátia Marques

Catia is Course Leader in Biological Sciences and has worked in cell research in several laboratories across Europe.

Catia Marques staff profile photo

Dr Federica Masieri

Federica is Associate Professor and Course Leader in MSc Regenerative Medicine.

Federica Masieri staff profile photo

Dr Christopher Turner

Christopher is Head of Life Science. His research studies animals at all levels, from their molecular and cell biology to their behaviour and ecology.

Robert Ellis

Rob is Associate Dean for Learning, Teaching and the Student Experience as well as the Director of Life Sciences.

Rob Ellis staff profile photo

Dr Vanessa Sharp

Vanessa is Lecturer in Nutrition and Human Health within Life Sciences across Nutrition and Human Health, Biomedical Science and Biological Science courses.

Vanessa Sharp staff profile photo

David Bowers

David is Senior Lecturer in Life Sciences (Maths) and a mathematician, statistician and learning developer.

David Bowers staff profile photo

Dr Silvia Atanasio

Silvia is a Senior Laboratory Technical Learning Instructor, responsible for the running of Life Science laboratories and providing technical support.

Silvia Atanasio staff profile photo

Svetlana Gretton

Svetlana is a Life Science Technical Learning Instructor in the School of Technology, Business and Arts.

Svetlana Gretton staff profile photo

Fees and Funding

UK Full-time Tuition Fee

£9,250

per year
UK Part-time Tuition Fee

£1,454*

per 20 credit module
International Full-time Tuition Fee

£14,598

per year

*Please contact the Student Centre for further details

The decision to study a degree is an investment into your future, there are various means of support available to you in order to help fund your tuition fees and living costs. You can apply for funding from the Spring before your course starts.

UK Fees and Finance UK Bursaries and Scholarships International Fees and Scholarships

Fees and Funding

UK Full-time Tuition Fee

£9,250

per year
UK Part-time Tuition Fee

£1,454*

per 20 credit module
International Full-time Tuition Fee

£15,210

per year

*Please contact the Student Centre for further details

The decision to study a degree is an investment into your future, there are various means of support available to you in order to help fund your tuition fees and living costs. You can apply for funding from the Spring before your course starts.

UK Fees and Finance UK Bursaries and Scholarships International Fees and Scholarships

Ipswich Award

The University of Suffolk is offering a £1,000 Award for students joining the University of Suffolk’s Ipswich campus. The Award is based on specific eligibility criteria based on your year of entry.

More information
A group of students walking down a stairwell

How to Apply

To study this course on a full-time basis, you can apply through UCAS. As well as providing your academic qualifications, you’ll be able to showcase your skills, qualities and passion for the subject.

Apply Now Further Information on Applying
A silhouette of a student in their cap and gown

Natalie Byles, Bioscience Graduate

"Being taught by highly influential tutors was so beneficial for me, both at an educational and personal level, as they were all dedicated to supporting students to strive for success."

read more
Students sitting in a graduation ceremony

Related Courses

Structure under a microscope
BSc (Hons) Biological Sciences

This course is a well-rounded programme in the field of biological sciences and allows you to select pathways and specialisms matched to your interest and career aspirations.

Bacteria sample
BSc (Hons) Biomedical Science

Biomedical science is a well-established but nonetheless dynamic and rapidly evolving scientific discipline aimed at improving our understanding of human health and disease.

Microscope showing blood cells
BSc (Hons) Biomedical Science (with Foundation Year)

The integrated Foundation Year provides students with the subject knowledge, study skills and personal confidence required to successfully progress towards obtaining a BSc (Hons) Biomedical Science degree.

Unibuddy: Chat to our Students and Staff

Aerial view of the Abbey Gardens in Bury St Edmunds

Destination Suffolk